Aljabar Vektor & Matriks

VEKTOR

I.1 Vektor Di R2 dan R3

1.1 Pengertian Vektor

a. Definisi

Vektor adalah suatu besaran yang mempunyai nilai (besar) dan arah. Contohnya yaitu gaya,kecepatan,percepatan dan lain-lain.

b. Notasi Vektor

Vektor ini dinyatakan dengan Notasi , , , a, atau dibaca “Vektor AB’. Titik A disebut pangkal (titik awal) dan B disebut titik ujung (terminal). Panjang dari titik A ke B menunjukan besar Vektor dan arah panah menunjukan arah vector.

c. Kesamaan Dua Vektor

Dua Vektor dan disebut sama jika keduanya mempunyai panjang dan arah yang sama.

Untuk dan di R2 :

Vektor = dan = sama ↔ x1 = x2 dan y1 = y2

Untuk dan di R3 :

Vektor = dan = sama ↔ x1 = x2, y1 = y2 dan z1 = z2

1.2 Sistem Koordinasi dalam Bidang dan Ruang

A. Sistem Koordinasi dalam Bidang

Sisitem koordinasi dalam bidang adalah ruang berdimensi 2 atau R2 yang dinyatakan dengan adanya dua buah sumbu yang saling berpotongan tegak lurus. Sebuah titik P dalam system koordinat cartesius berkorespondennsi dengan pasangan bialangan terurut (x,y). koordinat (x,y) menentukan jarak serta arah titik P terhadap sumbu x dan sumbu y. bilangan pertama x disebut absis dan bilangan kedua y disebut ordinat.

Aljabar Matrik Elementer

Definisi:

Matrik A berukuran mxn ialah suatu susunan angka dalam persegi empat ukuran mxn, sebagai berikut:

atau A = (aij)

Untuk menyatakan elemen matrik A yang ke (i,j), yaitu aij, digunakan notasi (A)ij . Ini berarti aij = (A)ij.

Bila m = n, matrik dinamai matrik bujur sangkar berukuran m.

Matrik berukuran mx1 disebut vektor kolom dan berukuran 1xn disebut vektor baris.

Contoh: a = , suatu vektor kolom, ai menyatakan komponen a ke i.

b =, suatu vektor baris, bi menyatakan komponen b ke i.

(A)i. menyatakan vektor baris ke i matrik A.

(A).j menyatakan vektor kolom ke j matrik A.

Latihan 1

Berdasarkan matrik A seperti yang tercantum pada definisi, sebutkan elemen-elemen matrik berikut:

(A)i. , (A)1. , (A)2 , (A)m. , (A).j , (A).1 , (A).2 , (A).n

Berbagai jenis matrik dan vektor :

Matrik Diagonal

Elemen diagonal matrik A ialah a11, a22, … , amm , khusus untuk matrik bujur sangkar; dan vektor a dengan m komponen adalah sebagai berikut :

a =

Bila semua elemen selain a11, a22, … , amm bernilai 0, A disebut matrik diagonal.

A = diag (a11, a22, … , amm) menyatakan matrik diagonal dengan elemen diagonal a11, a22, … , amm.

Bila aii = 1 untuk i = 1, 2, … , m, maka A disebut matrik identitas berukuran m, dinotasikan Im atau I.

DA = diag (a11, a22, … , amm) dan Da = diag (a1, a2, … , am)

DA = Da =

Bila A = diag (a1, a2, … , am) dan b skalar, maka Ab = diag .

Matrik Segitiga

Matrik segitiga ialah matrik dengan elemen di atas atau di bawah diagonal bernilai 0. Matrik segitiga terdiri dari dua macam, segitiga atas dan segitiga bawah. Segitiga atas bila yang bernilai 0 adalah elemen di bawah diagonal, dan segitiga bawah bila yang bernilai 0 di atas diagonal. Contoh matrik segitiga atas (misal dinamai P) dan segitiga bawah (misal dinamai Q) adalah sebagai berikut :

P = Q =

Bila A = Im , maka terdapat vektor e1, e2, … em, masing-masing menyatakan suatu vektor dengan komponen ke 1, 2, … m bernilai 1 dan komponen yang lain bernilai 0, dinyatakan sebagai berikut :

= = =

Vektor 0, Vektor 1 dan Matrik 0

0 menyatakan skalar bernilai 0.

0 menyatakan vektor dengan semua komponen bernilai 0.

(0) menyatakan matrik dengan semua elemen bernilai 0.

1 menyatakan vektor dengan semua komponen bernilai 1.

1m menyatakan vektor berukuran m komponen yang semuanya bernilai 1.

Latihan 2

Diketahui : A = , a = , b = 6.

Tulislah elemen matrik berikut : DA , Da , A = diag (a11, a22, … , amm), dan Ab

matrik segitiga atas dan segitiga bawah yang berkaitan dengan A

(A)1. , (A)2. , (A)4. , (A).1 , (A).2 , (A).3

Operasi Matrik

Penjumlahan,

Matrik yang dijumlahkan harus mempunyai ukuran yang sama, yaitu banyak baris dan kolom sama.

A + B = (aij) + (bij) = (aij + bij)

Perkalian matrik dengan skalar,

Bila A matrik dan skalar, maka :

A = A= (aij)

Perkalian matrik dengan matrik,

Ada dua macam perkalian matrik, yaitu perkalian sebelum (premultiplication) dan perkalian sesudah (postmultiplication), dan hasilnya tidak sama. Matrik A dikalikan dengan cara sebelum dengan matrik B, dituliskan BA; dan dikalikan secara sesudah dituliskan AB. Hasil BA tidak sama dengan AB.

Ukuran matrik yang dikalikan harus sesuai. Bila A berukuran mxn, maka matrik B yang akan dikalikan dengan A harus berukuran nxp, akan menghasilkan matrik baru, misal C berukuran mxp. Elemen ke (i,j) matrik C, yaitu cij, didapatkan dengan cara berikut :

cij = (A)i. (B).j =

Penjabaran : C = A B

cij = (ab)ij

= (A)i. (B).j

= vektor baris ke i matrik A dikalikan vektor kolom ke j matrik B

=

=

=

Matrik A yang memenuhi sifat A A = A2 = A disebut matrik idempoten.

Teorema 1

Bila dan skalar, sedang A, B, dan C matrik, maka berlaku beberapa sifat berikut :

(a) A + B = B + A

(b) (A+B) + C = A + (B + C)

(c) (A + B) = A + B

(d) ( + ) A = A + A

(e) A – A = A + (–A) = (0)

(f) A(B + C) = AB + AC

(g) (A + B)C = AC + BC

(h) (AB)C = A(BC)

Transpose

Transpose matrik A dinotasikan AT atau didapatkan dengan cara menukar elemen baris ke i matrik A menjadi elemen kolom ke i. Bila matrik A berukuran mxn, maka berukuran nxm dan elemen yang ke (i,j) adalah aji ; dapat pula dinyatakan ()ij = (A)ji . Berikut ini adalah contoh matrik ,

A = , =

B = , =

Diketahui matrik A berukuran mxp dan matrik B berukuran pxn , maka elemen ke (i,j) matrik (AB)¢

dinyatakan sebagai berikut :

((AB)¢)ij = (AB)ji

= (A)j. (B).i

=

=

=

=

= (elemen baris ke i matrik B¢ )(elemen kolom ke j matrik )

= (B¢ )i. ().j

= (B¢ )ij

Jadi : ()¢ = B¢

Teorema 2

Diketahui dan skalar, sedang A dan B matrik, maka berlaku beberapa sifat berikut :

(a) (A)¢ = A¢

(b) (A¢ )¢ = A

(c) (A + B)¢ = A¢ + B¢

(d) ()¢ = B¢

Bila A berukuran mxm maka juga berukuran mxm. Pada kasus A = , matrik A disebut matrik simetri; dan bila A = –, A disebut matrik skew simetri.

Transpose vektor kolom adalah vektor baris, dan ada matrik khusus (misal matrik Elementer dinotasi-kan E) merupakan hasil kali vektor kolom dengan vektor baris, eij = (E)ij = ei ej¢.

Dalam notasi lengkap,

ei,m e¢j,n menghasilkan matrik E berukuran mxn, dengan elemen yang tidak nol bernilai 1 dan

terletak pada posisi atau elemen ke (i,j).

Bagaimanakah bentuk matrik E ?

Setiap matrik A berukuran mxn dapat dinyatakan sebagai persamaan berikut :

(A) =

Trace

Trace terdefinisikan hanya pada matrik bujursangkar. Bila matrik A berukuran mxm maka trace A, dinotasikan tr(A), adalah jumlah elemen diagonal matrik A,

tr(A) =

Matrik A berukuran mxn dan B berukuran nxm, maka matrik AB berukuran mxm. Berlaku :

trace (AB) = trace (BA)

Penjabaran : tr(AB) =

=

Jadi : tr(AB) = tr(BA)

Teorema 3

Diketahui skalar, sedang A dan B matrik. Dengan menganggap kedua matrik ukurannya sesuai bila dikalikan, maka berlaku sifat berikut :

(a) tr(A¢ ) = tr(A)

(b) tr(A) = tr(A)

(c) tr(A + B) = tr(A) + tr(B)

(d) tr(AB) = tr(BA)

(e) tr(A¢A) = 0 bila dan hanya bila A = (0)

Determinan

Sebelum diuraikan perhitungan determinan dengan cara lain lebih dulu akan diuraikan dua pengertian penting, yaitu minor dan kofaktor.

Minor aij, dengan aij elemen matrik A berukuran mxm, dinotasikan mij, adalah determinan matrik beru-kuran (m-1)x(m-1). Matrik ini didapatkan dengan cara menghilangkan baris ke i dan kolom ke j matrik A.

Kofaktor aij dinotasikan Aij dinyatakan dengan persamaan berikut :

Aij = (-1)i+j mij

Determinan matrik A berukuran mxm didapatkan dengan dua cara, yaitu ekspansi menurut baris ke i dan menurut kolom ke j, masing-masing dinyatakan dengan persamaan berikut :

|A| = dan |A| =

Bila elemen dan kofaktor tidak bersesuaian hasil ekspansi akan bernilai 0. Ini berarti, kalau dida-patkan persamaan bernilai 0 sebagai berikut :

= = 0

Teorema 4

Bila skalar, sedang A dan B masing-masing matrik berukuran mxm maka berlaku sifat berikut.

(a) | A¢ | = |A|

(b) |A| = m |A|

(c) Bila A matrik diagonal maka |A| = a11 a22 … amm =

(d) Bila terdapat satu baris atau kolom matrik A yang semua elemennya bernilai 0 maka |A| = 0.

(e) Bila terdapat dua baris atau kolom matrik A dengan elemen-elemen baris atau kolom yang satu merupakan kelipatan elemen-elemen baris atau kolom yang lain, maka |A| = 0.

(f) Pertukaran elemen di dua baris atau kolom matrik A menyebabkan perubahan tanda |A|.

(g) Bila semua elemen di satu baris atau kolom matrik A dikalikan maka nilai determinannya menjadi kali.

(h) Determinan A tidak berubah bila kelipatan satu baris atau kolom ditambahkan kepada baris atau kolom yang lain.

(i) |AB| = |A| |B|

Invers

Matrik A berukuran mxm disebut matrik nonsingular bila |A| tidak nol. Matrik mempunyai invers tung-gal, dinotasikan A-1, dan memenuhi sifat berikut,

A A-1 = A-1A = I

Teorema 4

Bila skalar, sedang A dan B matrik nonsingular berukuran mxm, maka berlaku :

(a) (A)-1 = -1 A-1

(b) (A¢ )-1 = (A-1)¢

(c) (A-1)-1 = A

(d) | A-1| = | A |-1

(e) Bila A = diag(a11, a22, … ,amm), maka A1 = diag(.

(f) Bila A = A¢, maka A1 = (A1 )¢

(g) (AB)-1 = B1 A1

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: